##plugins.themes.bootstrap3.article.main##

Methicillin-resistant Staphylococcus aureus (MRSA) has a major public health concern. It can be identified throughout the chain of production for poultry, which raises questions regarding potential transmission from farm to consumer. MRSA has zoonotic significance and can be transmitted to humans and poultry. Several studies have been carried out on MRSA on poultry, but this study was conducted to find out the whole scenario of MRSA at the farm level. A total of 100 samples were collected randomly from different poultry farms and retail shops in Khulna city to investigate this study. MRSA was isolated and identified by culturing antibiotic susceptibility testing, and polymerase chain reaction (PCR). Among the 100 samples, 57% were positive for S. aureusand 80.70% of the isolated S. aureus showed hemolysis on blood agar. Among the 57 isolates, 78.94% were MRSA (oxacillin) and 19.29% were vancomycin-resistant Staphylococcus aureus (VRSA) phenotypically. Surprisingly, 59.64% of S. aureus results showed a positive mecA gene. It is also concerning that 60% of broiler meat and 53.84% of farm personnel were infected with MRSA. The present study revealed that MRSA could be transmitted from poultry to humans.

References

  1. Abd El-Ghany WA. Staphylococcus aureus in poultry, with special emphasis on methicillin-resistant strain infection: A comprehensive review from one health perspective. Int J One Health 2021; 7(2): 257-267.
     Google Scholar
  2. Shahid AH, Nazir KNH, El Zowalaty ME, Kabir A, Sarker SA, Siddique MP, et al. Molecular detection of vancomycin and methicillin resistance in Staphylococcus aureus isolated from food processing environments. One Health 2021; 13: 100276.
     Google Scholar
  3. Zaman SB, Sobur MA, Hossain MJ, Pondit A, Khatun MM, Choudhury MA, et al. Molecular detection of methicillin-resistant Staphylococcus aureus (MRSA) in ornamental birds having public health significance. J Bangla Agri Univ. 2020; 18(2): 415–420.
     Google Scholar
  4. Casey AL, Lambert PA, Elliott, TSJ. 2007. Staphylococci. Int J Anti Agen. 2007; 29: S23-S32.
     Google Scholar
  5. Olayinka BO, Bala HK, Ehinmidu JO, and Onaolapo, J.A. Multidrug resistant Staphylococcus aureus isolates from poultry farms in Zaria, Nigeria. 14th International Symposium on Staphylococci and Staphylococcal Infections; 2010 Sep 6-9; Bath, UK.
     Google Scholar
  6. El-Tawab A, Ashraf A, Hofy FI, Mohamed SR, Amin SH. Characterization of Methicillin Resistance Staphylococcus aureus isolated from chicken and human. Ben Vet Med J. 2017; 32(1):132-137.
     Google Scholar
  7. Persoons D, Van Hoorebeke S, Hermans K, Butaye P, De Kruif A, Haesebrouck F, et al. Methicillin-resistant Staphylococcus aureus in poultry. Emer Infect Dis. 2009; 15(3): 452.
     Google Scholar
  8. Fluit AC. Livestock-associated Staphylococcus aureus. Clin Microb Infect. 2012; 18(8): 735-744.
     Google Scholar
  9. Ali Y, Islam MA, Muzahid NH, Sikder MOF, Hossain MA, Marzan LW. Characterization, prevalence and antibiogram study of Staphylococcus aureus in poultry. Asian Pac J Trop Biomed. 2017; 7(3): 253-256.
     Google Scholar
  10. Van Duijkeren E, Wolfhagen MJ, Box AT, Heck ME, Wannet WJ, Fluit AC. Human-to-dog transmission of methicillin-resistant Staphylococcus aureus. Emer Infect Dis. 2004; 10(12): 2235.
     Google Scholar
  11. Witte W. Medical consequences of antibiotic use in agriculture. Science, 1998; 279(5353): 996-997.
     Google Scholar
  12. Kitai S, Shimizu A, Kawano J, Sato E, Nakano C, Uji T, et al. Characterization of methicillin-resistant Staphylococcus aureus isolated from retail raw chicken meat in Japan. J Vet Med Sci. 2005; 67(1): 107-110.
     Google Scholar
  13. Otalu OJ, Junaidu K, Chukwudi OE, Jarlath, UV. Multi-drug resistant coagulase positive Staphylococcus aureus from live and slaughtered chickens in Zaria, Nigeria. Int J Poult Sci. 2011; 10(11): 871-875.
     Google Scholar
  14. Darwish WS, Atia AS, Reda LM, Elhelaly AE, Thompson LA, Saad Eldin WF. Chicken giblets and wastewater samples as possible sources of methicillin‐resistant Staphylococcus aureus: Prevalence, enterotoxin production, and antibiotic susceptibility. J Food Saf. 2018; 38(4): e12478.
     Google Scholar
  15. Hossain MJ, Saha SM, Sohidullah M, Alam MA, Kundu SK. Comparative study on food safety knowledge, attitude and practice among street food vendors and consumers. Int J Nat Sci. 2021; 11 (2): 40-60.
     Google Scholar
  16. Habibullah A, Rahman A, Haydar M, Nazir KNH, Rahman MT. Occurrence and molecular detection of methicillin-resistant Staphylococcus aureus from dogs and cats in Dhaka City. Bangla J Vet Med. 2017; 15: 51-57.
     Google Scholar
  17. Bauer A, Kirby W, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American J Clin Patho. 1996; 45: 493-496.
     Google Scholar
  18. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 2017. CLSI supplement M100.
     Google Scholar
  19. Begum F, Islam M, Sohidullah M; Kabir SML, Islam M, Rahman MT. Molecular identification and antibiogram profiles of Escherichia coli isolated from apparently healthy and diarrheic goats. Bangla J Vet Med. 2016; 14: 203-208.
     Google Scholar
  20. Bakheet AA, Darwish SF. Prevelence of Methicillin-Resistant Staphylococcus aureus (MRSA) in Layer Chickens with Reference to its Ability to Form Biofilm and Enterotoxins. Alexa J Vet Sci. 2019; 63(2): 23-32.
     Google Scholar
  21. Kalorey DR, Shanmugam Y, Kurkure NV, Chousalkar KK, Barbuddhe SB. PCR-based detection of genes encoding virulence determinants in Staphylococcus aureus from bovine subclinical mastitis cases. J Vet Sci. 2007; 8(2): 151-154. DOI: 10.4142/jvs.2007.8.2.151.
     Google Scholar
  22. Benrabia I, Hamdi TM, Shehata AA, Neubauer H, Wareth G. Methicillin-resistant Staphylococcus aureus (MRSA) in poultry species in Algeria: Long-term study on prevalence and antimicrobial resistance. Vet Sci. 2020; 7(2): 54.
     Google Scholar
  23. Parvin MS, Ali MY, Talukder S, Nahar A, Chowdhury EH, Rahman MT, et al. Prevalence and multidrug resistance pattern of methicillin resistant S. aureus isolated from frozen chicken meat in Bangladesh. Microorganisms 2021; 9(3): 636.
     Google Scholar
  24. Aklilu E, Nurhardy AD, Mokhtar A, Zahirul IK, Rokiah AS. Molecular detection of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE) isolates in raw chicken meat. Int Food Res J. 2016; 23(1): 322.
     Google Scholar
  25. Kwoji ID, Jauro S, Musa JA, Lekko YM, Salihu SI, Danchuwa, HA. Phenotypic detection of methicillin-resistant Staphylococcus aureus in village chickens from poultry markets in Maiduguri, Nigeria. J Adv Vet Ani Res. 2019; 6(2): 163.
     Google Scholar
  26. da Silva LS, Andrade YM, Oliveira AC, Cunha BC, Oliveira EG, Cunha TS, et al. Prevalence of methicillin-resistant Staphylococcus aureus colonization among healthcare workers at a tertiary care hospital in northeastern Brazil. Infec Pre Prac. 2020; 2(4): 100084.
     Google Scholar
  27. Hossain MJ, Attia Y, Ballah FM, Islam MS, Sobur MA, Islam MA, et al. Zoonotic significance and antimicrobial resistance in Salmonella in poultry in Bangladesh for the period of 2011–2021. Zoonotic Dis. 2021; 1(1): 3-24.
     Google Scholar
  28. Hossain MJ, Islam MS, Sobur MA, Zaman SB, Nahar A, Rahman M, et al. Exploring Poultry Farm Environment for Antibiotic Resistant Escherichia coli, Salmonella spp., and Staphylococcus spp. Having Public Health Significance. J Bangla Agri Univ. 2020; 18(3): 615–622.
     Google Scholar
  29. El-Adawy H, Ahmed M, Hotzel H, Monecke S, Schulz J, Hartung J, et al. Characterization of methicillin-resistant Staphylococcus aureus isolated from healthy turkeys and broilers using DNA microarrays. Front Microb. 2016; 7: 2019.
     Google Scholar
  30. Ugwu MC, Omanukwue C, Chimezie C, Okezie U, Ejikeugwu CP, Nnnabuife-Iloh E, et al. Poultry farm and poultry products as sources of multiple antimicrobial-resistant Salmonella and S. aureus. J Trop Dis. 2019; 7(3): 1-23.
     Google Scholar
  31. Sallam KI, Abd-Elghany SM, Elhadidy M, Tamura T. Molecular characterization and antimicrobial resistance profile of methicillin-resistant Staphylococcus aureus in retail chicken. J Food Prot. 2015; 78(10):1879-1884.
     Google Scholar
  32. Tang J, Hu J, Kang L, Deng Z, Wu J, Pan J. The use of vancomycin in the treatment of adult patients with methicillin-resistant Staphylococcus aureus (MRSA) infection: a survey in a tertiary hospital in China. Int J Clin Experi Med. 2015; 8(10): 19436.
     Google Scholar
  33. Cong Y, Yang S, Rao, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res. 2020; 21: 169-176. DOI: 10.1016/j.jare.2019.10.005.
     Google Scholar
  34. Shahid AH, Nazir KNH, El Zowalaty ME, Kabir A, Sarker SA, Siddique MP, et al. Molecular detection of vancomycin and methicillin resistance in Staphylococcus aureus isolated from food processing environments. One Health 2021; 13: 100276.
     Google Scholar
  35. Feßler AT, Kadlec K, Hassel M, Hauschild T, Eidam C, Ehricht R, et al. Characterization of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Appl Environ Microb. 2010; 77(20): 7151-7157.
     Google Scholar